dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning Steered by Experts
نویسندگان
چکیده
Abstract Recent advances have shown how decision trees are apt data structures for concisely representing strategies (or controllers) satisfying various objectives. Moreover, they also make the strategy more explainable. The recent tool had provided pipelines with tools supporting synthesis hybrid systems, such as and . We present , a new version several fundamentally novel features. Most importantly, user can now provide domain knowledge to be exploited in tree learning process interactively steer based on dynamically information. To this end, we graphical interface. It allows inspection re-computation of parts result, suggesting well receiving advice predicates, visual simulation decision-making process. Besides, interface model checkers probabilistic namely dedicated support categorical enumeration-type state variables. Consequently, controllers explainable smaller.
منابع مشابه
Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملInverse halftoning by decision tree learning
Inverse halftoning is the process to retrieve a (gray) continuous-tone image from a halftone. Recently, machinelearning-based inverse halftoning techniques have been proposed. Decision-tree learning has been applied with success to various machine-learning applications for quite some time. In this paper, we propose to use decision-tree learning to solve the inverse halftoning problem. This allo...
متن کاملStrategy Representation by Decision Trees in Reactive Synthesis
Graph games played by two players over finite-state graphs are central in many problems in computer science. In particular, graph games with ω-regular winning conditions, specified as parity objectives, which can express properties such as safety, liveness, fairness, are the basic framework for verification and synthesis of reactive systems. The decisions for a player at various states of the g...
متن کاملClustering Via Decision Tree Construction
Clustering is an exploratory data analysis task. It aims to find the intrinsic structure of data by organizing data objects into similarity groups or clusters. It is often called unsupervised learning because no class labels denoting an a priori partition of the objects are given. This is in contrast with supervised learning (e.g., classification) for which the data objects are already labeled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-72013-1_17